The microsporidian spore invasion tube. II. Role of calcium in the activation of invasion tube discharge
نویسندگان
چکیده
A swelling response by the polaroplast organelle initiated microsporidian invasion tube extrusions by Glugea hertwigi spores. The tumescence was induced by the displacement of internal calcium. Sodium citrate, phosphate, and the calcium ionophore A23187 were effective in initiating polaroplast swelling and spore discharge; however, the addition of external CaCl2 switched the expanded polaroplasts to a contracted state and blocked spore discharge. Unlike CaCl2, equivalent concentrations of KCl, NaCl, MgCl2, and BaCl2 did not induced polaroplast contraction, and spore discharge was not blocked. 45CaCl2 readily incorporated into spores with expanded polaroplasts; however, little calcium uptake was apparent in spores with contracted polaroplasts. Metallochromic arsenazo III yielded a color spectrum characteristic of the dye-Ca++ complex in the polaroplast region; furthermore, a membrane association with calcium was indicated by strong chlorotetracycline fluorescence within the polaroplast; this fluorescence was extinguished by pretreating spores with ionophore A23187. An association of the membrane with calcium was also indicated by a potassium ferrocyanide-osmium tetroxide technique. All evidence indicates that an internal calcium displacement is an important initial step in the swelling response of the polaroplast organelle.
منابع مشابه
The microsporidian spore invasion tube. IV. Discharge activation begins with pH-triggered Ca2+ influx
The microsporidian spore extrusion apparatus activates with a calcium influx from Spraguea lophii spore wall/plasma membrane; this influx requires preconditioning with an extrasporular shift in medium pH to the alkaline in the presence of the polyanions mucin or polyglutamate. Undischarged S. lophii spores display calcium bound to the wall/plasma membrane with a characteristic calcium-chlorotet...
متن کاملThe microsporidian spore invasion tube. III. Tube extrusion and assembly
The polar filaments within microsporidian spores discharges as tubes with subsecond velocity. Populations of discharging tubes of Glugea hertwigi spores pulse-labeled with latex particles for 1-3 s were consistently devoid of label at the distal ends; discharging tubes were completely labeled after 30- to 60-s exposure to latex. This experiment indicates that discharge tubes grow at the tip. Co...
متن کاملThe microsporidian spore invasion tube. The ultrastructure, isolation, and characterization of the protein comprising the tube
The extrusion apparatus of the microsporidian parasitic protozoan Nosema michaelis discharges an invasion (or polar) tube with a velocity suitalbe for piercing cells and injecting infective sporoplasm. The tube is composed of a polar tube protein (PTP) which consists of a single, low molecular weight polypeptide slightly smaller than chymotrypsinogen-A. Assembled PTP tubes resist dissociation i...
متن کاملThe role of microsporidian polar tube protein 4 (PTP4) in host cell infection
Microsporidia have been identified as pathogens that have important effects on our health, food security and economy. A key to the success of these obligate intracellular pathogens is their unique invasion organelle, the polar tube, which delivers the nucleus containing sporoplasm into host cells during invasion. Due to the size of the polar tube, the rapidity of polar tube discharge and sporop...
متن کاملCharacterization and function of the microsporidian polar tube: a review.
Microsporidia are eukaryotic, obligate intracellular organisms defined by their small spores containing a single polar tube that coils around the interior of the spore. After appropriate stimuli the germination of spores occurs. Conditions that promote germination vary widely among species, presumably reflecting the organism's adaptation to their host and external environment as well as prevent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 93 شماره
صفحات -
تاریخ انتشار 1982